Linear and non-linear quantitative structure-activity relationship models on indole substitution patterns as inhibitors of HIV-1 attachment.

نویسندگان

  • Mahyar Nirouei
  • Ghasem Ghasemi
  • Parviz Abdolmaleki
  • Abdolreza Tavakoli
  • Shahab Shariati
چکیده

The antiviral drugs that inhibit human immunodeficiency virus (HIV) entry to the target cells are already in different phases of clinical trials. They prevent viral entry and have a highly specific mechanism of action with a low toxicity profile. Few QSAR studies have been performed on this group of inhibitors. This study was performed to develop a quantitative structure-activity relationship (QSAR) model of the biological activity of indole glyoxamide derivatives as inhibitors of the interaction between HIV glycoprotein gp120 and host cell CD4 receptors. Forty different indole glyoxamide derivatives were selected as a sample set and geometrically optimized using Gaussian 98W. Different combinations of multiple linear regression (MLR), genetic algorithms (GA) and artificial neural networks (ANN) were then utilized to construct the QSAR models. These models were also utilized to select the most efficient subsets of descriptors in a cross-validation procedure for non-linear log (1/EC50) prediction. The results that were obtained using GA-ANN were compared with MLR-MLR and MLR-ANN models. A high predictive ability was observed for the MLR, MLR-ANN and GA-ANN models, with root mean sum square errors (RMSE) of 0.99, 0.91 and 0.67, respectively (N = 40). In summary, machine learning methods were highly effective in designing QSAR models when compared to statistical method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Structure - Activity Relationships Study of Carbonic Anhydrase Inhibitors Using Logistic Regression Model

Binary Logistic Regression (BLR) has been developed as non-linear models to establish quantitative structure- activity relationships (QSAR) between structural descriptors and biochemical activity of carbonic anhydrase inhibitors. Using a training set consisted of 21 compounds with known ki values, the model was trained and tested to solve two-class problems as active or inactive on the basi...

متن کامل

Quantitative structure-activity relationship (QSAR) study of CCR2b receptor inhibitors using SW-MLR and GA-MLR approaches

In this paper, the quantitative structure activity-relationship (QSAR) of the CCR2b receptor inhibitors was scrutinized. Firstly, the molecular descriptors were calculated using the Dragon package. Then, the stepwise multiple linear regressions (SW-MLR) and the genetic algorithm multiple linear regressions (GA-MLR) variable selection methods were subsequently employed to select and implement th...

متن کامل

Quantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression

Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...

متن کامل

QSAR Study on Anti-HIV-1 Activity of 4-Oxo-1,4-dihydroquinoline and 4-Oxo-4H-pyrido[1,2-a]pyrimidine Derivatives Using SW-MLR, Artificial Neural Network and Filtering Methods

Predictive quantitative structure–activity relationship was performed on the novel 4-oxo-1,4-dihydroquinoline and 4-oxo-4H-pyrido[1,2-a]pyrimidine derivatives to explore relationship between the structure of synthesized compounds and their anti-HIV-1 activities. In this way, the suitable set of the molecular descriptors was calculated and the important descriptors using the variable selections ...

متن کامل

QSAR Study on Anti-HIV-1 Activity of 4-Oxo-1,4-dihydroquinoline and 4-Oxo-4H-pyrido[1,2-a]pyrimidine Derivatives Using SW-MLR, Artificial Neural Network and Filtering Methods

Predictive quantitative structure–activity relationship was performed on the novel 4-oxo-1,4-dihydroquinoline and 4-oxo-4H-pyrido[1,2-a]pyrimidine derivatives to explore relationship between the structure of synthesized compounds and their anti-HIV-1 activities. In this way, the suitable set of the molecular descriptors was calculated and the important descriptors using the variable selections ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Indian journal of biochemistry & biophysics

دوره 49 3  شماره 

صفحات  -

تاریخ انتشار 2012